

What could we do with layered structures of materials with just the right layers? -Feynman

Young Hee Lee Center for Integrated Nanostructure Physics Institute for Basic Science Sungkyunkwan University (SKKU), Korea

Center for Integrated Nanostructure Physics (CINAP)

Periodic table: 2D layered materials CINAP

What could we do with layered structures of materials with just the right layers? -Feynman

New material and physics world in 2D !!!!

ciencenotes.org

Atomic layered materials

Nat. Photon. 8, 899-907 (2014)

cinap

Vertical structure

New device structures by van der Waals stacking

A. K. Geim et al. Nature 499, 419 (2013)

Inap

What is new in 2D?

Inap

Strong Coulomb interaction or less charge screening

Coulomb interaction

Excitons at room temperature

Large exciton binding energy

- Emergence of excitons at room temperature
 : E_b^x ~ 1 eV
- Emergence of multiexcitons at room temperature
 - : trions, $E_b^{tri} \sim E_b^x + 30 \sim 40 \text{ meV}$
 - : biexcitons, E_b^{bi} ~ E_b^{tri} + 30 meV

Institute for Basic Science

Layer dependence

cinap

Band structures: Indirect bandgap (ML) => direct bandgap (1L)

b Institute for Basic Science

(C) In ap

Optical properties

(a,b) Li, H. et al. Adv. Funct. Mater. **2012**, 22, 1385–1390 (c,d) Eda, G. et al. Nano Lett. **2011**, *11*, 5111–5116

CINAP

S Institute for Basic Science

Layer dependence

Transport properties

D. Perrelo et al., Nature Comm. 6, 1-8 (2015)

Al contact for n-type Tr

T = 300K

- Type conversion with flake thickness: n-type to ambipolar
 - Graphene-like electron and hole mobilities
- Mobility increases in proportion to film thickness
 - Bandgap shrinkage and surface scattering reduction

Layer dependence

Cinap

Structural phase transition

Why MoS₂?

1T'

inap

- Various phases exist
- Tailoring such phases is a big challenge
- MoS₂ phase transition:
 2H (semicond) => 1T (metal)
 by Li intercalation
- Difficult to realize
- Severe lattice distortion

Basic Science

- Local phenomena

- Reduced charge screening

- High mobility ~200 cm² V⁻¹s⁻¹ (MoS₂)
- Optical properties:

Indirect bandgap (bulk) => direct bandgap (1L) Wide range of bandgap (1.0 ~ 2.5 eV)

H. Wang et al., PNAS 11, 19701 (2013)

Why MoTe₂?

Similar to MoS₂ but.....

- Bandgap : ~ 1 eV, similar to Si
 - good for energy harvesting
 - good for TFET
- Cohesive energy difference between 2H and 1T is smaller than that of MoS₂
- Rich physics: CDW, superconductivity...

Polymorph engineering of MoTe₂

Phase stability

CINAP

-> Polymorph engineering is easier in MoTe₂

b Basic Science

Single crystal MoTe₂ by flux method cinap

Single crystal growth (flux method): mix Mo and Te powder with sodium flux & sintering

TEM comparison

1T'-MoTe₂

Structures of MoTe₂

D. H. Keum & S. Y. Cho et al., Nature Phys. 11, 482 (2015)

Temperature-dependent XRD

Structural phase transition by temperature -> absence of Te deficiency

-> reversible phase transition

b Institute for Basic Science

Cinap

27

Raman & absorption spectroscopy

$1T'-MoTe_2$

<u>c)inap</u>

-> Sign of small bandgap in monoclinic TMDs

-> New results on Raman and absorption spectroscopy in 1T'-MoTe₂

b^S Institute for Basic Science

Large spin-orbit coupling

Cinap

Electrical properties

<u>c inap</u>

 -> High carrier mobility at low temperature
 -> High power factor : 0.04 ~ 11 mW/mK² (4 mW/mK² : state-of-the-art thermoelectric materials)

bs Institute for Basic Science

Electronic phase transition in MoTe₂

Cinap

Ohmic contact in 2D??

- Ohmic contact in Si: Ion implantation
- Ohmic contact in 2D?
 - ion implantation damages 2D layer
 - metal/2D: weak van der Waals interface
 => side contact to provoke covalent bonds?
 - phase transition from 2H to 1T
 by Li intercalation in MoS₂
 - phase transition by light irradiation
 - BN to modulate Schottky barrier??

CINAP

Light-induced phase transition in MoTe₂

Light illumination!!

Laser irradiation at a chosen local area => Phase control with 1 µm spatial resolution

S. Cho et al., Science 349, 625 (2015)

Cinap

- Laser thinning

Institute for Basic Science

- Phase conversion to 1T'

Inap

Laser-patterned Ohmic junction in MoTe₂ Cinap

Summary & Future works

Key findings

- Reversible Structural Phase Transition
- Bandgap Opening in 1T'-MoTe₂ by 'Spin-Orbit Coupling'
- Local Phase Transition -> Ohmic contact in 2D
- Room-Temperature Phase Transition by Small Strain

Future projects

Basic Science

- Superconductivity in MoTe₂
- Bandgap ~ 1 eV
 Photovoltaic, Optoelectronic devices

Cinap

- Vertical tunneling device

Environmental susceptability

Physical and chemical properties can be easily modulated by environment

Strain effect

B. G. Shin et al., submitted!

Bandgap is strongly modulated with local strain in MoS₂!

B. G. Shin et al., submitted!

80% area is converted to indirect bandgap from direct bandgap!

1b^S Institute for Basic Science

Room-temperature phase transition

CINAP

First-order M-I transition at RT can be induced by small tensile strain (0.2%)

Dielectric constant modulation

Morphology

2.14

Bandgap (eV)

Elias et al., Nature Physics 2011 From the renormalization group theory:

$$\frac{k}{v_{\rm F}} \frac{\partial v_{\rm F}}{\partial k} = -\frac{e^2}{4\epsilon \hbar v_{\rm F}} \qquad \text{where } \epsilon = (1 + \epsilon_{\rm s})/2$$
$$\alpha = e^2/\epsilon \hbar v_{\rm F}$$

Lin et al., NanoLett. 14, 5569 (2014) 6 (a) 2.8 2.4 (b) 5 (this work) **Transition Energy** (1971) E_{a} (DFT) EA-I(A^{_})/I(A) E E this work E_a (Mott-Wannier 3-A exciton A⁻ trion PLA (this work) 2 PLA_ (this work) 1.6 5 10 20 0 15 Effective Dielectric Constant

nm

-0.4

0.0

-0.4

-0.8

nap

Work function modulation

S. Y. Lee et al., submitted

nab

Work function of MoS₂ is modulated by O₂ adsorption/desorption!

: 0.4 eV, similar to graphene

van der Waals stacking

cinap

Quantum mechanical phenomena

$1L-MoS_2 vs 6L-MoS_2$

Thermoelectric Properties (Bi_{0.5}Sb_{1.5}Te₃) Cinap

Dimensionless Figure of Merit, zT

S. I. Kim et al., Science 348, 109-114 (2015)

Synthesis of 2D materials

- Large-area, monolayer monocrystalline graphene (Adv. Mat. 27, 1376 (2015))
- Large-area, AB stacking bilayer graphene (unpublished)
- Large-area, monolayer MoS₂, seed growth by CVD (Nature Comm. (2015))
- -Large-area monolayer WSe₂ on Au substrate by CVD (ACS Nano 9, 5510 (2015)
- Seed growth for MX₂ (M: Mo, W, X: S, Se) (unpublished)
- Thin MoTe₂ film from Mo metal (ACS Nano 9, 6548 (2015))
- Multilayer hBN is also available
 => on SiO₂/Si, unpublished
 => on Fe : Nature Comm., ASAP
- on Pt: Large area monolayer hBN, ACS NANO 8, 8520 (2014)
- on Au: mm-size monolayer singlecrystalline hBN, unpublished

Summary

van der Waals engineering!

There is a plenty of room for new phenomena in 2D materials!

